
Chapter

23 String Algorithms

Algorithms Book Word Cloud, 2014. Word cloud produced by frequency rank-

ing the words in this book using wordcloud.cs.arizona.edu. Used with permis-

sion.

Contents

23.1 String Operations . . . . . . . . . . . . . . . . . . . . . . 653

23.2 The Boyer-Moore Algorithm . . . . . . . . . . . . . . . . 656

23.3 The Knuth-Morris-Pratt Algorithm . . . . . . . . . . . . 660

23.4 Hash-Based Lexicon Matching . . . . . . . . . . . . . . 664

23.5 Tries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

23.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 680



652 Chapter 23. String Algorithms

Document processing is one of the main applications of computers. We use

computers to edit documents, to search documents, to transport documents over the

Internet, and to display documents on printers and computer screens. Web search-

ing is a significant and important document processing application, and many of the

key computations in all of this document processing involve character strings and

string pattern matching. For example, the Internet document formats HTML and

XML are primarily text formats, with added links to multimedia content. Making

sense of the many terabytes of information on the Internet requires a considerable

amount of text processing.

In this chapter, we study several fundamental text processing algorithms for

quickly performing important operations on strings of characters. We pay partic-

ular attention to algorithms for string searching and pattern matching, since these

can often be computational bottlenecks in many document processing applications.

We also study some fundamental algorithmic issues involved in text processing, as

well.

Not surprisingly, text processing algorithms operate primarily on inputs that use

character strings as the underlying data type of the objects involved. The terminol-

ogy and notation for strings, as used in this chapter, is fairly intuitive, and it turns

out that representing a string as an array of characters is simple and efficient. Here,

we typically think of the input size, n, as referring to the length of the strings used

as inputs. So we don’t spend a lot of attention discussing data structures for string

representations. For instance, we can think of a string simply as an array of char-

acters, with many string operations amounting to simple query operations on such

arrays. Nevertheless, string processing often involves an interesting method for

string pattern matching, and we study pattern matching algorithms in this chapter.

We also study the trie data structure, which is a tree-based structure that allows

for fast searching in a collection of strings. One of the special cases of this data

structure is the suffix trie, which allows for a number of interesting queries to be

performed on strings.

We should also mention that there are several string problems discussed in pre-

vious chapters. For instance, we discuss an important text processing problem in

Section 10.3—namely, the problem of compressing a document of text so that it fits

more efficiently in storage or can be transmitted more efficiently over a network. In

addition, in Section 12.5, we deal with how we can measure the similarity between

two documents, based on the use of dynamic programming to solve the longest

common subsequence problem. All of these problems are topics that arise often

in Internet computations, such as web crawlers, search engines, document distribu-

tion, and information retrieval. We discuss, for instance, how the trie data structure

can be used to implement a supporting data structure for a search engine.
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23.1 String Operations

Text documents are ubiquitous in modern computing, as they are used to communi-

cate and publish information. From the perspective of algorithm design, such doc-

uments can be viewed as simple character strings. That is, they can be abstracted

as a sequence of the characters that make up their content. Performing interesting

searching and processing operations on such data, therefore, requires that we have

efficient methods for dealing with character strings.

At the heart of algorithms for processing text are methods for dealing with char-

acter strings. Character strings can come from a wide variety of sources, including

scientific, linguistic, and Internet applications. Indeed, the following are examples

of such strings:

P = "CGTAAACTGCTTTAATCAAACGC"

R = "U.S. Lands an Astronaut on Mars!"

S = "http://www.wiley.com/college/goodrich/".

The first string, P , comes from DNA applications, the last string, S, is the URL

for the website that accompanies this book, and the middle string, R, is a fictional

news headline. In this section, we present some of the useful operations that are

supported by string representations for processing strings.

Substrings

Several of the typical string processing operations involve breaking large strings

into smaller strings. In order to be able to speak about the pieces that result from

such operations, we use the term substring of an m-character string P to refer to

a string of the form P [i]P [i + 1]P [i + 2] · · ·P [j], for some 0 ≤ i ≤ j ≤ m − 1,

that is, the string formed by the characters in P from index i to index j, inclusive.

Technically, this means that a string is actually a substring of itself (taking i = 0
and j = m − 1), so if we want to rule this out as a possibility, we must restrict

the definition to proper substrings, which require that either i > 0 or j < m − 1.

To simplify the notation for referring to substrings, let us use P [i..j] to denote the

substring of P from index i to index j, inclusive. That is,

P [i..j] = P [i]P [i + 1] · · ·P [j].

We use the convention that if i > j, then P [i..j] is equal to the null string, which

has length 0. In addition, in order to distinguish some special kinds of substrings,

let us refer to any substring of the form P [0..i], for 0 ≤ i ≤ m − 1, as a prefix

of P , and any substring of the form P [i..m − 1], for 0 ≤ i ≤ m − 1, as a suffix

of P . For example, if we again take P to be the string of DNA given above, then

"CGTAA" is a prefix of P , "CGC" is a suffix of P , and "TTAATC" is a (proper)

substring of P . Note that the null string is a prefix and a suffix of any other string.

http://www.wiley.com/college/goodrich
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The Pattern Matching Problem

In the classic pattern matching problem on strings, we are given a text string T
of length n and a pattern string P of length m, and want to find whether P is a

substring of T . The notion of a “match” is that there is a substring of T starting at

some index i that matches P , character by character, so that

T [i] = P [0], T [i + 1] = P [1], . . . , T [i + m − 1] = P [m − 1].

That is,

P = T [i..i + m − 1].

Thus, the output from a pattern matching algorithm is either an indication that the

pattern P does not exist in T or the starting index in T of a substring matching P .

To allow for fairly general notions of a character string, we typically do not

restrict the characters in T and P to come explicitly from a well-known character

set, like the ASCII or Unicode character sets. Instead, we typically use the general

symbol Σ to denote the character set, or alphabet, from which the characters of

T and P can come. This alphabet Σ can, of course, be a subset of the ASCII or

Unicode character sets, but it could also be more general and is even allowed to

be infinite. Nevertheless, since most document processing algorithms are used in

applications where the underlying character set is finite, we usually assume that the

size of the alphabet Σ, denoted with |Σ|, is a fixed constant.

Example 23.1: Suppose we are given the text string

T = "abacaabaccabacabaabb"

and the pattern string
P = "abacab".

Then P is a substring of T . Namely, P = T [10..15].

Brute-Force Pattern Matching

The brute-force approach pattern is a technique for algorithm design when we have

something we wish to search for or when we wish to optimize some function and

we can afford to spend a considerable amount of time optimizing it. In applying this

technique in a general situation, we typically enumerate all possible configurations

of the inputs involved and pick the best of all these enumerated configurations.

In applying this technique to the pattern matching algorithm, we simply test

all the possible placements of P relative to T . This approach, shown in Algo-

rithm 23.1, is quite simple.

The brute-force pattern matching algorithm could not be simpler. It consists of

two nested loops, with the outer loop indexing through all possible starting indices

of the pattern in the text, and the inner loop indexing through each character of the
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Algorithm BruteForceMatch(T, P ):

Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

for i ← 0 to n − m // for each candidate index in T do

j ← 0
while (j < m and T [i + j] = P [j]) do

j ← j + 1
if j = m then

return i
return “There is no substring of T matching P .”

Algorithm 23.1: Brute-force pattern matching.

pattern, comparing it to its potentially corresponding character in the text. Thus,

the correctness of the brute-force pattern matching algorithm follows immediately.

The running time of brute-force pattern matching in the worst case is not good,

however, because, for each candidate index in T , we can perform up to m character

comparisons to discover that P does not match T at the current index. Referring

to Algorithm 23.1, we see that the outer for-loop is executed at most n − m + 1
times, and the inner loop is executed at most m times. Thus, the running time of

the brute-force method is O((n − m + 1)m), which is O(nm). Note that, when

m = n/2, this algorithm has quadratic running time O(n2).

In Figure 23.2 we illustrate the execution of the brute-force pattern matching

algorithm on the strings T and P from Example 23.1.

11 comparisons

1

a b a c a a b a c c a b a c a b a a b b

7

8

27262523

a b a c a b

a b a c a b

a b a c a b

a b a c a b

2422

10

a b a c a b

2 3 4 5 6

9

Figure 23.2: Example run of the brute-force pattern matching algorithm. The algo-

rithm performs 27 character comparisons, indicated above with numerical labels.
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23.2 The Boyer-Moore Algorithm

At first, we might feel that it is always necessary to examine every character in T
in order to locate a pattern P as a substring. But this is not always the case, for the

Boyer-Moore (BM) pattern matching algorithm, which we study in this section, can

sometimes avoid comparisons between P and a sizable fraction of the characters

in T . The only caveat is that whereas the brute-force algorithm can work even with

a potentially unbounded alphabet, the BM algorithm assumes the alphabet is of

fixed, finite size. It works most quickly when the alphabet is moderately sized and

the pattern is relatively long.

In this section, we describe a simplified version of the original BM algorithm.

The main idea is to improve the running time of the brute-force algorithm by adding

two potentially time-saving heuristics:

Looking-Glass Heuristic: When testing a possible placement of P against T , be-

gin the comparisons from the end of P and move backward to the front of P .

Character-Jump Heuristic: During the testing of a possible placement of P against

T , a mismatch of text character T [i] = c with the corresponding pattern char-

acter P [j] is handled as follows. If c is not contained anywhere in P , then

shift P completely past T [i] (for it cannot match any character in P ). Other-

wise, shift P until an occurrence of character c in P gets aligned with T [i].

We will formalize these heuristics shortly, but at an intuitive level, they work as an

integrated team. The looking-glass heuristic sets up the other heuristic to allow us

to avoid comparisons between P and whole groups of characters in T . In this case

at least, we can get to the destination faster by going backward, for if we encounter

a mismatch during the consideration of P at a certain location in T , then we are

likely to avoid lots of needless comparisons by significantly shifting P relative to

T using the character-jump heuristic. The character-jump heuristic pays off big if

it can be applied early in the testing of a potential placement of P against T .

Therefore, let us define how the character-jump heuristics can be integrated

into a string pattern matching algorithm. To implement this heuristic, we define a

function last(c) that takes a character c from the alphabet and specifies how far we

may shift the pattern P if a character equal to c is found in the text that does not

match the pattern. In particular, we define last(c) as follows:

• If c is in P , last(c) is the index of the last (right-most) occurrence of c in P .

Otherwise, we conventionally define last(c) = −1.

If characters can be used as indices in arrays, then the last function can be eas-

ily implemented as a lookup table. We leave the method for computing this table
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efficiently as a simple exercise (R-23.6). The last function will give us all the in-

formation we need to perform the character-jump heuristic. In Algorithm 23.3, we

show the BM pattern matching method. The jump step is illustrated in Figure 23.4.

Algorithm BMMatch(T, P ):

Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

compute function last
i ← m − 1
j ← m − 1
repeat

if P [j] = T [i] then

if j = 0 then

return i // a match!

else

i ← i − 1
j ← j − 1

else

i ← i + m − min(j, 1 + last(T [i])) // jump step

j ← m − 1
until i > n − 1
return “There is no substring of T matching P .”

Algorithm 23.3: The Boyer-Moore pattern matching algorithm.

In Figure 23.5, we illustrate the execution of the Boyer-Moore pattern matching

algorithm on a similar input string as in Example 23.1.

Worst-Case Analysis of the Boyer-Moore Algorithm

The correctness of the BM pattern matching algorithm follows from the fact that

each time the method makes a shift, it is guaranteed not to “skip” over any possible

matches. For last(c) is the location of the last occurrence of c in P .

The worst-case running time of the BM algorithm is O(nm + |Σ|). Namely,

the computation of the last function takes time O(m + |Σ|) and the actual search

for the pattern takes O(nm) time in the worst case, the same as the brute-force

algorithm. An example of a text-pattern pair that achieves the worst case is

T =

n
︷ ︸︸ ︷
aaaaaa · · · a

P = b

m−1
︷ ︸︸ ︷
aa · · · a .

The worst-case performance, however, is unlikely to be achieved for English text.
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Improved Analysis of the Boyer-Moore Algorithm

Indeed, the BM algorithm is often able to skip over large portions of the text. (See

Figure 23.6.) There is experimental evidence that on English text, the average

number of comparisons done per text character is approximately 0.24 for a five-

character pattern string. The payoff is not as great for binary strings or for very short

patterns, however, in which case the KMP algorithm, discussed in Section 23.3, or,

for very short patterns, the brute-force algorithm, may be better.

We have actually presented a simplified version of the Boyer-Moore (BM) al-

gorithm. The original BM algorithm achieves running time O(n + m + |Σ|) by

using an alternative shift heuristic to the partially matched text string, whenever

it shifts the pattern more than the character-jump heuristic. This alternative shift

heuristic is based on applying the main idea from the Knuth-Morris-Pratt pattern

matching algorithm, which we discuss in the next section.

Worst-Case Improvement for String Pattern Matching

In studying the worst-case performance of the brute-force and BM pattern matching

algorithms on specific instances of the problem, such as that given in Example 23.1,

we should notice a major inefficiency. Specifically, we may perform many compar-

isons while testing a potential placement of the pattern against the text, yet if we

(a)

. . . . . . . . . . a . . . . . . . . .

. a . . b .

i

jl

. a . . b .

m  - (1 + l)

1 + l

(b)

. . . . . . . . . . a . . . . . . . . .

. . . . b a

i

j l

. . . . b a

m  - j

j

Figure 23.4: Illustration of the jump step in the BM algorithm, where l denotes

last(T [i]). We distinguish two cases: (a) 1 + l ≤ j, where we shift the pattern by

j − l units; (b) j < 1 + l, where we shift the pattern by one unit.
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1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

The last(c) function:

c a b c d

last(c) 4 5 3 −1

Figure 23.5: An illustration of the BM pattern matching algorithm. The algorithm

performs 13 character comparisons, which are indicated with numerical labels.

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Figure 23.6: Execution of the Boyer-Moore algorithm on an English text and pat-

tern, where a significant speedup is achieved. Note that not all text characters are

examined.

discover a pattern character that does not match in the text, then we throw away all

the information gained by these comparisons and start over again from scratch with

the next incremental placement of the pattern.

The Knuth-Morris-Pratt (or “KMP”) algorithm, which we discuss next, avoids

this waste of information and, in so doing it achieves a running time of O(n + m),
which is optimal in the worst case. That is, in the worst case any pattern matching

algorithm will have to examine all the characters of the text and all the characters

of the pattern a constant number of times.
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23.3 The Knuth-Morris-Pratt Algorithm

The main idea of the KMP algorithm is to preprocess the pattern string P so as

to compute a failure function f that indicates the proper shift of P so that, to the

largest extent possible, we can reuse previously performed comparisons. Specifi-

cally, the failure function f(j) is defined as the length of the longest prefix of P
that is a suffix of P [1..j] (note that we did not put P [0..j] here). We also use the

convention that f(0) = 0. Later, we will discuss how to compute the failure func-

tion efficiently. The importance of this failure function is that it “encodes” repeated

substrings inside the pattern itself.

Example 23.2: Consider the pattern string P = "abacab" from Example 23.1.

The KMP failure function f(j) for the string P is as shown in the following table:

j 0 1 2 3 4 5

P [j] a b a c a b

f(j) 0 0 1 0 1 2

The KMP pattern matching algorithm, shown in Algorithm 23.7, incrementally

processes the text string T comparing it to the pattern string P .

Algorithm KMPMatch(T, P ):

Input: Strings T (text) with n characters and P (pattern) with m characters

Output: Starting index of the first substring of T matching P , or an indication

that P is not a substring of T

f ← KMPFailureFunction(P ) // construct the failure function f for P
i ← 0
j ← 0
while i < n do

if P [j] = T [i] then

if j = m − 1 then

return i − m + 1 // a match!

i ← i + 1
j ← j + 1

else if j > 0 // no match, but we have advanced in P then

j ← f(j − 1) // j indexes just after prefix of P that must match

else

i ← i + 1
return “There is no substring of T matching P .”

Algorithm 23.7: The KMP pattern matching algorithm.
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Intuition Behind the KMP Algorithm

During the execution of the KMP algorithm, each time there is a match, we incre-

ment the current indices. On the other hand, if there is a mismatch and we have

previously made progress in P , then we consult the failure function to determine

the new index in P where we need to continue checking P against T . Otherwise

(there was a mismatch and we are at the beginning of P ), we simply increment the

index for T (and keep the index variable for P at its beginning). We repeat this

process until we find a match of P in T or the index for T reaches n, the length

of T (indicating that we did not find the pattern P in T ).

The main part of the KMP algorithm is the while-loop, which performs a com-

parison between a character in T and a character in P each iteration. Depending

upon the outcome of this comparison, the algorithm either moves on to the next

characters in T and P , consults the failure function for a new candidate character in

P , or starts over with the next index in T . The correctness of this algorithm follows

from the definition of the failure function. The skipped comparisons are actually

unnecessary, for the failure function guarantees that all the ignored comparisons

are redundant—they would involve comparing characters we already know match.

In Figure 23.8, we illustrate the execution of the KMP pattern matching algo-

rithm on the same input strings as in Example 23.1. Note the use of the failure

function to avoid redoing one of the comparisons between a character of the pat-

tern and a character of the text. Also note that the algorithm performs fewer overall

comparisons than the brute-force algorithm run on the same strings (Figure 23.2).

1

a b a c a a b a c c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

no comparison

needed here

Figure 23.8: An illustration of the KMP pattern matching algorithm. The failure

function f for this pattern is given in Example 23.2. The algorithm performs 19
character comparisons, which are indicated with numerical labels.
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Analysis of the KMP Algorithm

Excluding the computation of the failure function, the running time of the KMP

algorithm is clearly proportional to the number of iterations of the while-loop. For

the sake of the analysis, let us define k = i − j. Intuitively, k is the total amount

by which the pattern P has been shifted with respect to the text T . Note that

throughout the execution of the algorithm, we have k ≤ n. One of the following

three cases occurs at each iteration of the loop.

• If T [i] = P [j], then i increases by 1, and k does not change, since j also

increases by 1.

• If T [i] 	= P [j] and j > 0, then i does not change and k increases by at least

1, since in this case k changes from i−j to i−f(j−1), which is an addition

of j − f(j − 1), which is positive because f(j − 1) < j.

• If T [i] 	= P [j] and j = 0, then i increases by 1 and k increases by 1, since j
does not change.

Thus, at each iteration of the loop, either i or k increases by at least 1 (possibly

both); hence, the total number of iterations of the while-loop in the KMP pattern

matching algorithm is at most 2n. Of course, achieving this bound assumes that we

have already computed the failure function for P .

Constructing the KMP Failure Function

To construct the failure function used in the KMP pattern matching algorithm, we

use the method shown in Algorithm 23.9. This algorithm is another example of

a “bootstrapping” process quite similar to that used in the KMPMatch algorithm.

We compare the pattern to itself as in the KMP algorithm. Each time we have

two characters that match, we set f(i) = j + 1. Note that since we have i > j
throughout the execution of the algorithm, f(j − 1) is always defined when we

need to use it.

Algorithm KMPFailureFunction runs in O(m) time. Its analysis is analogous

to that of algorithm KMPMatch. Thus, we have the following:

Theorem 23.3: The Knuth-Morris-Pratt algorithm performs pattern matching on

a text string of length n and a pattern string of length m in O(n + m) time.

The running time analysis of the KMP algorithm may seem a little surprising

at first, for it states that, in time proportional to that needed just to read the strings

T and P separately, we can find the first occurrence of P in T . Also, it should be

noted that the running time of the KMP algorithm does not depend on the size of

the alphabet.
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Algorithm KMPFailureFunction(P ):

Input: String P (pattern) with m characters

Output: The failure function f for P , which maps j to the length of the longest

prefix of P that is a suffix of P [1..j]

i ← 1
j ← 0
f(0) ← 0
while i < m do

if P [j] = P [i] then

// we have matched j + 1 characters

f(i) ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then

// j indexes just after a prefix of P that must match

j ← f(j − 1)
else

// we have no match here

f(i) ← 0
i ← i + 1

Algorithm 23.9: Computation of the failure function used in the KMP pattern

matching algorithm. Note how the algorithm uses the previous values of the failure

function to efficiently compute new values.

The intuition behind the worst-case efficiency of the KMP algorithm comes

from our being able to get the most out of each comparison that we do, and by our

not performing comparisons we know to be redundant. The KMP algorithm is best

suited for strings from small-size alphabets, such as DNA sequences.

Limitations for Repeated Queries

The BM and KMP pattern matching algorithms presented above speed up the

search of a pattern in a text by preprocessing the pattern (to compute the failure

function in the KMP algorithm or the last function in the BM algorithm). In some

applications, however, we would like to take a complementary approach, where

we would consider a string searching algorithms that preprocess the text to sup-

port multiple queries. This approach is suitable for applications where a series of

queries is performed on a fixed text, so that the initial cost of preprocessing the text

is compensated by a speedup in each subsequent query (for example, a website that

offers pattern matching in Shakespeare’s Hamlet or a search engine that offers web

pages on the Hamlet topic).
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23.4 Hash-Based Lexicon Matching

In this section, we discuss an approach to string pattern matching that is due to Karp

and Rabin and is based on hashing. The advantage of this approach is that it lets us

efficiently solve a generalization of the string pattern matching problem, which we

call lexicon matching. In this problem, we are given a set, L = {P1, P2, . . . , Pl},

of l different pattern strings, and a text string, T , and we would like to find all the

places in T where a pattern, Pi, is a substring. We call the set, L, the lexicon of

strings we would like to find in T .

For example, L could be a set consisting of trademarked words for a certain

company, Example.com, and T could be the text of a book published by a former

employee. A lawyer for Example.com might like to search for all the instances in

T where a trademarked word for Example.com is used. Alternatively, L could be

a set consisting of nontrivial sentences from published articles about Shakespeare

and T could be a term paper submitted by a certain student, William Fakespeare, in

a Shakespeare course. The instructor for this course might wish to know whether

William plagiarized any of the sentences from L in writing his term paper, T . Both

of these examples are possible applications of an efficient algorithm for the lexicon

matching problem.

Let h(X) be a hash function that takes a character string, X , and maps it to an

integer. (See Chapter 6.) Say that such a function is a uniform hash function for L
if, for any pattern Pk in L, the number of other patterns, Pj , with j 	= k, such that

h(Pi) = h(Pj), is O(1). Intuitively, we refer to h as a “uniform” hash function in

this case, because it spreads the hash values for the strings in L uniformly in the

range of h. Note, however, that we are not necessarily requiring that we store the

patterns in L in a hash table—each hash value for a pattern in L is instead a kind of

“fingerprint” for that pattern.

Let us assume, for the sake of simplicity, that all the patterns in the lexicon L
are of the same length, m. (We explore a more general case in Exercise C-23.13.)

The hash-based lexicon matching algorithm for L and T consists of two phases. In

the first phase, we compute the hash value of each pattern in the lexicon, L, and

insert this value, together with the index of the corresponding pattern, in a set, H .

In the second phase, we step through the text, T , and compute the hash value of the

length-m substring of T starting at that point. If we find a match with a hash value

of a pattern in the lexicon L, then we do a full character-by-character comparison

of the corresponding pattern and this substring of T to see if we have a confirmed

substring match. (See Figure 23.10.)

We give a pseudocode description of the Karp-Rabin hash-based lexicon match-

ing algorithm in Algorithm 23.11.
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Figure 23.10: How the Karp-Rabin hash-based lexicon matching algorithm works.

A hash value, h(X), is computed for each length-m substring, X , of the text. If it

matches the hash value of a pattern, it is then confirmed as either a true match or a

false match.

Algorithm HashMatch(L, T ):

Input: A set, L = {P1, . . . , Pl}, of l pattern strings, each of length m, and a

text string, T , of length n
Output: Each pair, (i, k), such that a pattern, Pk, in L, appears as a substring

of T starting at index i

1: Let H be an initially empty set of key-value pairs (with hash-value keys)

2: Let A be an initially empty list of integer pairs (for found matches)

3: for k ← 1 to l do

4: Add the key-value pair, (h(Pk), k), to H
5: for i ← 0 to n − m do

6: f ← h(T [i..i + m − 1])
7: for each key-value pair, (f, k), with key f in H do

8: // check Pk against T [i..i + m − 1]
9: j ← 0

10: while j < m and T [i + j] = Pk[j] do

11: j ← j + 1
12: if j = m then

13: Add (i, k) to A // a match at index i for Pk

14: return A

Algorithm 23.11: The Karp-Rabin hash-based lexicon matching algorithm.
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Analysis of the Karp-Rabin Algorithm

Let us analyze the Karp-Rabin hash-based lexicon matching algorithm, assuming

that computing h(X) takes O(m) time for any string, X , of length m. Since there

are l pattern strings in L, each of length m, computing the hash values for the

patterns in L and inserting all the hash-indexed pairs into H , for the patterns in L,

takes O(lm) expected time, if we implement H as a hash table, or O(lm log l) time

if we implement H using a balanced binary search tree. Similarly, each execution

of Step 6, to compute the hash value of a length-m substring of T , takes O(m)
time; hence, computing all the hash values for the length-m substrings in T takes

O(nm) time. If we implement H as a hash table, then doing each lookup for such

a computed hash value takes O(1) expected time, and if H is implemented with a

balanced binary search tree, then this lookup takes O(log l) time. Finally, the total

time for performing all the while-loops is O(lnm) in the worst case, since there

are l patterns, each of length m. Thus, the total running time of this algorithm

is O(lnm + (n + l) log l) = O(lnm + l log l) in the worst case. Of course, this

worst-case time is no better than using the brute-force algorithm to search for every

pattern in L separately.

This worst-case bound is based on the pessimistic assumption that the hash

values for the patterns in L might all be identical, however. Instead, if we assume

that the hash function, h, is a uniform hash function for L, then the number of

collisions for any hash value, h, is O(1). Under this assumption, the Karp-Rabin

hash-based lexicon matching algorithm runs in O(lm+nm) expected time, if H is

implemented with a hash table, since the number of iterations of the for-each loop

is O(1) in each invocation in this case.

23.4.1 An Optimization for Rolling Hash Functions

Suppose the patterns in L and the text T are sufficiently diverse so that the proba-

bility that any pattern in L appears as a substring at a given location in T is at most

1/m. This assumption is reasonable for real-world applications, for example, such

as in the trademarked-words or plagiarism examples given above. Under this diver-

sity assumption, the total time needed to perform all the tests for possible matches

in the text T is expected to be O(n(1/m)m) = O(n), which is optimal, since it

takes O(n) time just to input T itself.

Unfortunately, even under this diversity assumption, the running time for the

above Karp-Rabin hash-based lexicon matching algorithm is still Ω(nm), if it takes

Ω(m) time to compute the hash value of each length-m substring of the text, T (in

Step 6 of Algorithm 23.11). We can eliminate this bottleneck, however, if we use a

rolling-hash function, h, for which there exists a constant-time shift-hash function,

shiftHash(h(X[i..i + m − 1]), X, i), which takes a hash value, h(X[i..i + m −
1]), for the length-m substring, X[i..i + m − 1], starting at index i, of a string,

X , and computes the hash value, h(X[i + 1..i + m]), of the length-m substring,
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X[i + 1..i + m], starting at index i + 1 of X . (See Figure 23.12.)

Figure 23.12: How a rolling-hash function works in the Karp-Rabin algorithm.

For example, consider polynomial-based hashing (which, as discussed in Sec-

tion 6.2.2, works well for character strings) applied to length-m character strings.

In this case, we have a seed value, a > 0, and a prime number, p > cm, where c is

the number of characters in our alphabet, and we define the hash, h(X[i..i+m−1]),
of a length-m substring, X[i..i + m − 1], of a string, x, as follows:

X[i]am−1 + X[i + 1]am−2 + · · · + X[i + m − 2]a + X[i + m − 1],

where we view each character in X as an integer in the range [0, c − 1] and all

arithmetic is done modulo p. We can compute this hash function using O(m)
arithmetic operations, by Horner’s rule, as

X[i + m − 1] + a(X[i − m − 2] + · · · + a(X[i + 1] + aX[i]) · · · ),

where all arithmetic is done modulo p.

In this case, we can compute the function, shiftHash(h(X[i..i+m−1], X, i),
as

a
(
h(X[i..i + m − 1]) − X[i]am−1

)
+ X[i + m],

which equals

X[i + 1]am−1 + X[i + 2]am−2 + · · · + X[i + m − 1]a + X[i + m],

with all arithmetic done modulo p. Also, note that we can compute this shift-hash

function using O(1) modular arithmetic operations if we have precomputed the

value of am−1 mod p and we have the hash value h(X[i..i + m − 1]).

We give a pseudocode description of the rolling-hash implementation of the

Karp-Rabin lexicon matching algorithm in Algorithm 23.13.



668 Chapter 23. String Algorithms

Algorithm RollingHashMatch(L, T ):

Input: A set, L = {P1, . . . , Pl}, of l pattern strings, each of length m, and a

text string, T , of length n
Output: Each pair, (i, k), such that a pattern, Pk, in L, appears as a substring

of T starting at index i

1: Let H be an initially empty set of key-value pairs (with hash-value keys)

2: Let A be an initially empty list of integer pairs (for found matches)

3: for k ← 1 to l do

4: Add the key-value pair, (h(Pk), k), to H
5: for i ← 0 to n − m do

6: if i = 0 then // initial hash

7: f ← h(T [0..m − 1])
8: else

9: f ← shiftHash(f, T, i)
10: for each key-value pair, (f, k), with key f in H do

11: // check Pk against T [i..i + m − 1]
12: j ← 0
13: while j < m and T [i + j] = Pk[j] do

14: j ← j + 1
15: if j = m then

16: Add (i, k) to A // a match at index i for Pk

17: return A

Algorithm 23.13: A rolling-hash implementation of the Karp-Rabin lexicon match-

ing algorithm.

Analysis of Rolling-Hash Lexicon Matching

Let us analyze this rolling-hash lexicon matching algorithm, assuming that the pat-

terns in L and T are sufficiently diverse and the rolling-hash function, h, is chosen

so that the probability that a hash value for a length-m substring of T has a match

with any pattern in L is at most 1/m. For example, in the polynomial hash function

discussed above, if the prime number, p, is chosen to be larger than cm, where c
is the number of characters in the alphabet, then the probability that two randomly

chosen length-m character strings have the same hash value is at most 1/cm. Un-

der this diversity and hash-function assumption, then, the expected running time

for the Karp-Rabin lexicon matching algorithm is O(lm + n), assuming the set

H is implemented with a hash table. This performance is due to the fact that the

expected number of O(m)-time comparisons between a pattern Pk and a length-m
substring of T is O(n/m). Note that the expected running time of O(lm + n) is

also optimal, since it takes O(lm + n) time just to read in the input strings for this

problem.



23.5. Tries 669

23.5 Tries

A trie (pronounced “try”) is a tree-based data structure for storing strings in order

to support fast pattern matching. The main application for tries is in information

retrieval. Indeed, the name “trie” comes from the word “retrieval.” In an informa-

tion retrieval application, such as a search for a certain DNA sequence in a genomic

database, we are given a collection S of strings, all defined using the same alphabet.

The primary query operations that tries support are pattern matching and prefix

matching. The latter operation involves being given a string X , and looking for all

the strings in S that contain X as a prefix.

23.5.1 Standard Tries

Let S be a set of s strings from alphabet Σ, such that no string in S is a prefix

of another string. A standard trie for S is an ordered tree T with the following

properties (see Figure 23.14):

• Each node of T , except the root, is labeled with a character of Σ.

• The ordering of the children of an internal node of T is determined by a

canonical ordering of the alphabet Σ.

• T has s external nodes, each associated with a string of S, such that the con-

catenation of the labels of the nodes on the path from the root to an external

node v of T yields the string of S associated with v.

Thus, a trie T represents the strings of S with paths from the root to the external

nodes of T . Note the importance of assuming that no string in S is a prefix of

another string. This ensures that each string of S is uniquely associated with an

external node of T . We can always satisfy this assumption by adding a special

character that is not in the original alphabet Σ at the end of each string.

An internal node in a standard trie T can have anywhere between 1 and d chil-

dren, where d is the size of the alphabet. There is an edge going from the root r to

one of its children for each character that is first in some string in the collection S.

In addition, a path from the root of T to an internal node v at depth i corresponds

to an i-character prefix X[0..i − 1] of a string X of S. In fact, for each character

c that can follow the prefix X[0..i − 1] in a string of the set S, there is a child of

v labeled with character c. In this way, a trie concisely stores the common prefixes

that exist among a set of strings.

If there are only two characters in the alphabet, then the trie is essentially a

binary tree, although some internal nodes may have only one child (that is, it may

be an improper binary tree). In general, if there are d characters in the alphabet,

then the trie will be a multi-way tree where each internal node has between 1 and
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Figure 23.14: Standard trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}.

d children. In addition, there are likely to be several internal nodes in a standard

trie that have fewer than d children. For example, the trie shown in Figure 23.14

has several internal nodes with only one child. We can implement a trie with a tree

storing characters at its nodes.

Theorem 23.4: A standard trie storing a collection S of s strings of total length

n from an alphabet of size d has the following properties:

• Every internal node of T has at most d children

• T has s external nodes

• The height of T is equal to the length of the longest string in S
• The number of nodes of T is O(n).

The worst case for the number of nodes of a trie occurs when no two strings

share a common nonempty prefix—that is, except for the root, all internal nodes

have one child.

A trie T for a set S of strings can be used to implement a dictionary whose keys

are the strings of S. Namely, we perform a search in T for a string X by tracing

down from the root the path indicated by the characters in X . If this path can be

traced and terminates at an external node, then we know X is in the dictionary. For

example, in the trie in Figure 23.14, tracing the path for “bull” ends up at an exter-

nal node. If the path cannot be traced or the path can be traced but terminates at an

internal node, then X is not in the dictionary. In the example in Figure 23.14, the

path for “bet” cannot be traced and the path for “be” ends at an internal node. Nei-

ther such word is in the dictionary. Note that in this implementation of a dictionary,

single characters are compared instead of the entire string (key).
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Analysis

It is easy to see that the running time of the search for a string of size m is O(dm),
where d is the size of the alphabet. Indeed, we visit at most m + 1 nodes of T and

we spend O(d) time at each node. For some alphabets, we may be able to improve

the time spent at a node to be O(1) or O(log d) by using a dictionary of characters

implemented in a hash table or lookup table. However, since d is a constant in most

applications, we can stick with the simple approach that takes O(d) time per node

visited.

Application to Word Matching

From the above discussion, it follows that we can use a trie to perform a special type

of pattern matching, called word matching, where we want to determine whether

a given pattern matches one of the words of the text exactly. (See Figure 23.15.)

Word matching differs from standard pattern matching since the pattern cannot

match an arbitrary substring of the text, but only one of its words. Using a trie,

word matching for a pattern of length m takes O(dm) time, where d is the size of

the alphabet, independent of the size of the text. If the alphabet has constant size

(as is the case for text in natural languages and DNA strings), a query takes O(m)
time, proportional to the size of the pattern. A simple extension of this scheme

supports prefix matching queries. However, arbitrary occurrences of the pattern in

the text (for example, the pattern is a proper suffix of a word or spans two words)

cannot be efficiently performed.

Standard Trie Construction

To construct a standard trie for a set S of strings, we can use an incremental algo-

rithm that inserts the strings one at a time. Recall the assumption that no string of S
is a prefix of another string. To insert a string X into the current trie T , we first try

to trace the path associated with X in T . Since X is not already in T and no string

in S is a prefix of another string, we will stop tracing the path at an internal node v
of T before reaching the end of X . We then create a new chain of node descendants

of v to store the remaining characters of X . The time to insert X is O(dm), where

m is the length of X and d is the size of the alphabet. Thus, constructing the entire

trie for set S takes O(dn) time, where n is the total length of the strings of S.
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Figure 23.15: Word matching and prefix matching with a standard trie: (a) an ex-

ample text that is to be searched; (b) a standard trie for the words in the text (with

articles and prepositions, which are also known as stop words, excluded). We show

external nodes augmented with indications of the corresponding word positions.

There is a potential space inefficiency in the standard trie that has prompted the

development of the compressed trie, which is also known (for historical reasons)

as the Patricia trie. Namely, there are potentially a lot of nodes in the standard trie

that have only one child, and the existence of such nodes is a waste, for it implies

that the total number of nodes in the tree could be more than the number of words

in the corresponding text.

We discuss the compressed trie data structure in the next subsection.
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23.5.2 Compressed Tries

A compressed trie is similar to a standard trie but it ensures that each internal node

in the trie has at least two children. It enforces this rule by compressing chains of

single-child nodes into individual edges. (See Figure 23.16.) Let T be a standard

trie. We say that an internal node v of T is redundant if v has one child and is not

the root. For example, the trie of Figure 23.14 has eight redundant nodes. Let us

also say that a chain of k ≥ 2 edges,

(v0, v1)(v1, v2) · · · (vk−1, vk),
is redundant if

• vi is redundant for i = 1, . . . , k − 1
• v0 and vk are not redundant.

We can transform T into a compressed trie by replacing each redundant chain

(v0, v1) · · · (vk−1, vk) of k ≥ 2 edges into a single edge (v0, vk), relabeling vk

with the concatenation of the labels of nodes v1, . . . , vk.

e
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u

ll y

ell to

ck p

id

Figure 23.16: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}. Compare this with the standard trie shown in Figure 23.14.

Thus, nodes in a compressed trie are labeled with strings, which are substrings

of strings in the collection, rather than with individual characters. The advantage of

a compressed trie over a standard trie is that the number of nodes of the compressed

trie is proportional to the number of strings and not to their total length, as shown

in the following theorem (compare with Theorem 23.4).

Theorem 23.5: A compressed trie storing a collection S of s strings from an

alphabet of size d has the following properties:

• Every internal node of T has at least two children and at most d children

• T has s external nodes

• The number of nodes of T is O(s).
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The attentive reader may wonder whether the compression of paths provides

any significant advantage, since it is offset by a corresponding expansion of the

node labels. Indeed, a compressed trie is truly advantageous only when it is used as

an auxiliary index structure over a collection of strings already stored in a primary

structure, and is not required to actually store all the characters of the strings in the

collection. Given this auxiliary structure, however, the compressed trie is indeed

quite efficient.

Suppose, for example, that the collection S of strings is an array of strings S[0],
S[1], . . ., S[s−1]. Instead of storing the label X of a node explicitly, we represent it

implicitly by a triplet of integers (i, j, k), such that X = S[i][j..k]; that is, X is the

substring of S[i] consisting of the characters from the jth to the kth included. (See

the example in Figure 23.17. Also compare with the standard trie of Figure 23.15.)
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Figure 23.17: (a) Collection S of strings stored in an array. (b) Compact represen-

tation of the compressed trie for S.

This additional compression scheme allows us to reduce the total space for the

trie itself from O(n) for the standard trie to O(s) for the compressed trie, where n
is the total length of the strings in S and s is the number of strings in S. We must

still store the different strings in S, of course, but we nevertheless reduce the space

for the trie. In the next section, we present an application where the collection of

strings can also be stored compactly.
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23.5.3 Suffix Tries

One of the primary applications for tries is for the case when the strings in the col-

lection S are all the suffixes of a string X . Such a trie is called the suffix trie (also

known as a suffix tree or position tree) of string X . For example, Figure 23.18a

shows the suffix trie for the eight suffixes of string "minimize".

For a suffix trie, the compact representation presented in the previous section

can be further simplified. Namely, we can construct the trie so that the label of

each vertex is a pair (i, j) indicating the string X[i..j]. (See Figure 23.18b.) To

satisfy the rule that no suffix of X is a prefix of another suffix, we can add a special

character, denoted with $, that is not in the original alphabet Σ at the end of X (and

thus to every suffix). That is, if string X has length n, we build a trie for the set of

n strings X[i..n − 1]$, for i = 0, . . . , n − 1.

Saving Space

Using a suffix trie allows us to save space over a standard trie by using several

space compression techniques, including those used for the compressed trie. The

advantage of the compact representation of tries now becomes apparent for suffix

tries. Since the total length of the suffixes of a string X of length n is

1 + 2 + · · · + n =
n(n + 1)

2
,

storing all the suffixes of X explicitly would take O(n2) space. Even so, the suf-

fix trie represents these strings implicitly in O(n) space, as formally stated in the

following theorem.

Theorem 23.6: The compact representation of a suffix trie T for a string X of

length n uses O(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental algo-

rithm like the one given in Section 23.5.1. This construction takes O(dn2) time

because the total length of the suffixes is quadratic in n. However, the (compact)

suffix trie for a string of length n can be constructed in O(n) time with a specialized

algorithm, different from the one for general tries. This linear-time construction al-

gorithm is fairly complex, however, and is not reported here. Still, we can take

advantage of the existence of this fast construction algorithm when we want to use

a suffix trie to solve other problems.
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Figure 23.18: (a) Suffix trie T for the string X = "minimize". (b) Compact

representation of T , where pair (i, j) denotes X[i..j].

Using a Suffix Trie

The suffix trie T for a string X can be used to efficiently perform pattern matching

queries on text X . Namely, we can determine whether a pattern P is a substring of

X by trying to trace a path associated with P in T . P is a substring of X if and

only if such a path can be traced. The details of the pattern matching algorithm are

given in Algorithm 23.19, which assumes the following additional property on the

labels of the nodes in the compact representation of the suffix trie:

If node v has label (i, j) and Y is the string of length y associated with

the path from the root to v (included), then X[j − y + 1..j] = Y .

This property ensures that we can easily compute the start index of the pattern in

the text when a match occurs.
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Algorithm suffixTrieMatch(T, P ):

Input: Compact suffix trie T for a text X and pattern P
Output: Starting index of a substring of X matching P or an indication that P

is not a substring of X

p ← P.length() // length of suffix of the pattern to be matched

j ← 0 // start of suffix of the pattern to be matched

v ← T.root()
repeat

f ← true // flag indicating that no child was successfully processed

for each child w of v do

i ← start(w)
if P [j] = T [i] then

// process child w
x ← end(w) − i + 1
if p ≤ x then

// suffix is shorter than or of the same length of the node label

if P [j..j + p − 1] = X[i..i + p − 1] then

return i − j // match

else

return “P is not a substring of X”

else

// suffix is longer than the node label

if P [j..j + x − 1] = X[i..i + x − 1] then

p ← p − x // update suffix length

j ← j + x // update suffix start index

v ← w
f ← false

break out of the for loop

until f or T.isExternal(v)
return “P is not a substring of X”

Algorithm 23.19: Pattern matching with a suffix trie. We denote the label of a node

v with (start(v), end(v)), that is, the pair of indices specifying the substring of the

text associated with v.
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Suffix Trie Properties

The correctness of algorithm suffixTrieMatch follows from the fact that we search

down the trie T , matching characters of the pattern P one at a time until one of the

following events occurs:

• We completely match the pattern P .

• We get a mismatch (caught by the termination of the for-loop without a

breakout).

• We are left with characters of P still to be matched after processing an exter-

nal node.

Let m be the size of pattern P and d be the size of the alphabet. In order to

determine the running time of algorithm suffixTrieMatch, we make the following

observations:

• We process at most m + 1 nodes of the trie.

• Each node processed has at most d children.

• At each node v processed, we perform at most one character comparison

for each child w of v to determine which child of v needs to be processed

next (which may possibly be improved by using a fast dictionary to index the

children of v).

• We perform at most m character comparisons overall in the processed nodes.

• We spend O(1) time for each character comparison.

Analysis

We conclude that algorithm suffixTrieMatch performs pattern matching queries in

O(dm) time (and would possibly run even faster if we used a dictionary to index

children of nodes in the suffix trie). Note that the running time does not depend on

the size of the text X . Also, the running time is linear in the size of the pattern,

that is, it is O(m), for a constant-size alphabet. Hence, suffix tries are suited for

repetitive pattern matching applications, where a series of pattern matching queries

is performed on a fixed text.

We summarize the results of this section in the following theorem.

Theorem 23.7: Let X be a text string with n characters from an alphabet of

size d. We can perform pattern matching queries on X in O(dm) time, where m is

the length of the pattern, with the suffix trie of X , which uses O(n) space and can

be constructed in O(dn) time.

We explore another application of tries in the next subsection.
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23.5.4 Search Engines

The World Wide Web contains a huge collection of text documents (web pages).

Information about these pages is gathered by a program called a web crawler, which

then stores this information in a special dictionary database. A web search engine

allows users to retrieve relevant information from this database, thereby identifying

relevant pages on the web containing given keywords. In this section, we present a

simplified model of a search engine.

Inverted Files

The core information stored by a search engine is a dictionary, called an inverted

index or inverted file, storing key-value pairs (w, L), where w is a word and L
is a collection of references to pages containing word w. The keys (words) in

this dictionary are called index terms and should be a set of vocabulary entries

and proper nouns as large as possible. The elements in this dictionary are called

occurrence lists and should cover as many web pages as possible.

We can efficiently implement an inverted index with a data structure consisting

of the following:

• An array storing the occurrence lists of the terms (in no particular order)

• A compressed trie for the set of index terms, where each external node stores

the index of the occurrence list of the associated term.

The reason for storing the occurrence lists outside the trie is to keep the size of the

trie data structure sufficiently small to fit in internal memory. Instead, because of

their large total size, the occurrence lists have to be stored on disk.

With our data structure, a query for a single keyword is similar to a word match-

ing query (see Section 23.5.1). Namely, we find the keyword in the trie and we

return the associated occurrence list.

When multiple keywords are given and the desired output is the pages contain-

ing all the given keywords, we retrieve the occurrence list of each keyword using

the trie and return their intersection. To facilitate the intersection computation,

each occurrence list should be implemented with a sequence sorted by address or

with a dictionary, which allows for a simple intersection algorithm similar to sorted

sequence merging (Section 8.1).

In addition to the basic task of returning a list of pages containing given key-

words, search engines provide an important additional service by ranking the pages

returned by relevance. Devising fast and accurate ranking algorithms for search

engines is a major challenge for computer researchers and electronic commerce

companies.
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23.6 Exercises

Reinforcement

R-23.1 How many nonempty prefixes of the string P ="aaabbaaa" are also suffixes

of P ?

R-23.2 Draw a figure illustrating the comparisons done by the brute-force pattern match-

ing algorithm for the case when the text is "aaabaadaabaaa" and the pattern

is "aabaaa".

R-23.3 Repeat the previous problem for the BM pattern matching algorithm, not count-

ing the comparisons made to compute the last function.

R-23.4 Repeat the previous problem for the KMP pattern matching algorithm, not count-

ing the comparisons made to compute the failure function.

R-23.5 Compute a table representing the last function used in the BM pattern matching

algorithm for the pattern string

"the quick brown fox jumped over a lazy cat"

assuming the following alphabet (which starts with the space character):

Σ = { ,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}.

R-23.6 Assuming that the characters in alphabet Σ can be enumerated and can index

arrays, give an O(m + |Σ|) time method for constructing the last function from

an m-length pattern string P .

R-23.7 Compute a table representing the KMP failure function for the pattern string

"cgtacgttcgtac".

R-23.8 Draw a standard trie for the following set of strings:

{abab, baba, ccccc, bbaaaa, caa, bbaacc, cbcc, cbca}.

R-23.9 Draw a compressed trie for the set of strings given in Exercise R-23.8.

R-23.10 Draw the compact representation of the suffix trie for the string

"minimize minime".

R-23.11 What is the longest prefix of the string "cgtacgttcgtacg" that is also a

suffix of this string?

R-23.12 Give an example of an input instance for lexicon matching problem, with just a

single pattern in the lexicon, L, that forces the Karp-Rabin algorithm given in

Algorithm 23.11 to run in Ω(nm) time.

R-23.13 Explain why tabulation hashing, which is discussed in Section 6.2.3, is not a good

candidate for use in a rolling-hash lexicon matching algorithm.

R-23.14 Describe how to compute shiftHash(h(X[i..i+m−1]), X, i) for the hash func-

tion, h(X[i..i + m − 1]) = X[i] + · · · + X[i + m − 1], where each character is

viewed as an integer in the range [0, c − 1], with c being the size of the alphabet,

and all arithmetic is done modulo a prime, p.
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Creativity

C-23.1 Give an example of a text T of length n and a pattern P of length m that

force the brute-force pattern matching algorithm to have a running time that is

Ω(nm).

C-23.2 Give a justification of why the KMPFailureFunction method (Algorithm 23.9)

runs in O(m) time on a pattern of length m.

C-23.3 Show how to modify the KMP string pattern matching algorithm so as to find

every occurrence of a pattern string P that appears as a substring in T , while

still running in O(n + m) time. (Be sure to catch even those matches that over-

lap.)

C-23.4 Let T be a text of length n, and let P be a pattern of length m. Describe an

O(n + m)-time method for finding the longest prefix of P that is a substring

of T .

C-23.5 Say that a pattern P of length m is a circular substring of a text T of length n if

there is an index 0 ≤ i < m, such that P = T [n − m + i..n − 1] + T [0..i − 1],
that is, if P is a substring of T or P is equal to the concatenation of a suffix of T
and a prefix of T . Give an O(n + m)-time algorithm for determining whether P
is a circular substring of T .

C-23.6 The KMP pattern matching algorithm can be modified to run faster on binary

strings by redefining the failure function as

f(j) = the largest k < j such that P [0..k − 2]P [k − 1] is a suffix of P [1..j],

where overlineP [k] denotes the complement of the kth bit of P . Describe how

to modify the KMP algorithm to be able to take advantage of this new failure

function and also give a method for computing this failure function. Show that

this method makes at most n comparisons between the text and the pattern (as

opposed to the 2n comparisons needed by the standard KMP algorithm given in

Section 23.3).

C-23.7 Modify the simplified BM algorithm presented in this chapter using ideas from

the KMP algorithm so that it runs in O(n + m) time.

C-23.8 Consider the substring pattern matching problem for a length-m pattern, P , and

a length-n text, T , where one of the characters in P is a symbol, “?,” which

is not in the alphabet for the text. This symbol, “?,” is a wild-card character,

which matches with any character of the alphabet for the text. The pattern, P ,

contains exactly one “?” symbol. Show how to modify the Karp-Rabin matching

algorithm for this single-pattern instance of the lexicon matching problem so that

the expected running time of the resulting algorithm is O(n + m).

C-23.9 Show how to perform prefix matching queries using a suffix trie.

C-23.10 Give an efficient algorithm for deleting a string from a standard trie and analyze

its running time.

C-23.11 Give an efficient algorithm for deleting a string from a compressed trie and ana-

lyze its running time.
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C-23.12 Describe an algorithm for constructing the compact representation of a suffix trie

and analyze its running time.

C-23.13 Describe a generalized version of the Karp-Rabin lexicon matching algorithm

for the case when their are k different possible pattern sizes. Characterize the

running time of this algorithm in terms of n, k, and the total size, N , of all the

patterns in the lexicon.

Applications

A-23.1 When a web crawler is exploring the Internet looking for content to index for a

search engine, the crawler needs some way of detecting when it is visiting a copy

of a website it has encountered before. Describe a way for a web crawler to store

its web pages efficiently so that it can detect in O(n) time whether a web page of

length n has been previously encountered and, if not, add it to the collection of

previously encountered web pages in O(1) additional time.

A-23.2 Search engines need a fast way to detect and ignore stop words, that is, words,

such as prepositions, pronouns, and articles, that are very common and carry no

meaningful information content. Describe an efficient method for storing and

searching a set of stop words in a way that supports stop-word identification in

constant time for all constant-length stop words.

A-23.3 DNA strings are sometimes spliced into other DNA strings as a product of re-

combinant DNA processes. But DNA strings can be read in what would be either

the forward or backward direction for a standard character string. Thus, it is use-

ful to be able to identify prefixes and their reversals. Let T be a DNA text string

of length n. Describe an O(n)-time method for finding the longest prefix of T
that is a substring of the reversal of T .

A-23.4 Linguists are interested in studying the way in which words are constructed, with

common prefixes and suffixes giving important clues to the meanings of words

they are contained in. Thus, a useful tool for a linguist would be to be able to

identify all the words in a given collection, W , of words, that have the same

prefix, p, or suffix, s. Indeed, it is useful even to just know the number of such

words in W . Describe how to build a data structure for W that can quickly

answer, for any prefix, p, or suffix, s, the number of words in W that have the

prefix p or suffix s. What is the performance of your method?

A-23.5 One way to mask a message, M , using a version of steganography, is to insert

random characters into M at pseudo-random locations so as to expand M into a

larger string, C. For instance, the message,

ILOVEMOM,

could be expanded into

AMIJLONDPVGEMRPIOM.

It is an example of hiding the string, M , in plain sight, since the characters in

M and C are not encrypted. As long as someone knows where the random
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characters where inserted, he or she can recover M from C. The challenge for

law enforcement, therefore, is to prove when someone is using this technique,

that is, to determine whether a string C contains a message M in this way. Thus,

describe an O(n)-time method for detecting if a string, M , is a subsequence of a

string, C, of length n.

A-23.6 Consider the previous exercise, but now suppose that the masking process first

pads many random characters to form a prefix and suffix of M before adding a

few random characters at various locations in the middle of M . Thus, a likely

message, M , is one that is much shorter than the host string, C. Describe an

O(n2)-time algorithm for determining if M is a subsequence of C, and, if so,

returns the shortest substring of C having M as a subsequence.

A-23.7 Suppose Bill is graduate of Slacker University, and he took a little “shortcut”

when he was asked to build a software system that could take a pattern, P , of

length, m, and text, T , of length, n, with both defined over the same alphabet of

size d for some constant d > 1, and determine whether P is a substring of T .

Namely, Bill’s software simply returns the answer “no” whenever it is asked to

determine whether a pattern P of length m is contained in a text T of length n.

When confronted by his Boss about this software, Bill replied that his software

system is almost always correct, that is, Bill claims that his software fails with

probability that is o(1) as a function of m and n. Give an asymptotic charac-

terization of the probability that Bill’s simple algorithm incorrectly determines

whether P is a substring in T , assuming that all possible pattern strings of length

m are equally likely. Is Bill right about his software?

A-23.8 Suppose the trustee for the estate of famous photographer, Ansel Adams, was

interested in finding examples of people posting Ansel Adams photographs on

their personal websites without including attributions to him. Suppose further

that some of these people have tried to conceal their possible copyright infringe-

ment by cropping the image down to be a smaller size. Thus, given a candidate

image, P , taken from someone’s personal website, and his own photograph, T ,

Mr. Adams is interested in determining whether it is possible to create the im-

age P by cropping the image T . Assuming that P and T are square images,

this problem can be easily modeled as a two-dimensional version of the pattern

matching problem. In two-dimensional pattern matching, a pattern, P , is given

as an m × m array of characters, and the text, T , is given as an n × n array

of characters, and we are interested in finding a location, (i, j), such that P is a

submatrix of T when shifted to the location, (i, j). That is,

P [k, l] = T [i + k, j + l],

for k = 0, . . . , m − 1 and l = 0, . . . , m − 1. In the context of the problem

of interest for the trustee of the estate of Ansel Adams, each pixel in an image

could be viewed as a character (corresponding, for example, to an 8-bit intensity

value in a black-and-white image). Describe an efficient algorithm for solving

this two-dimensional pattern matching problem. What are the worst-case and

expected-case running times for your algorithm?
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Chapter Notes

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [132].

Boyer and Moore published their algorithm in the same year [35]. In their article, Knuth

et al. [132] also prove that the BM algorithm runs in linear time. More recently, Cole [46]

shows that the BM algorithm makes at most 3n character comparisons in the worst case,

and this bound is tight. Hashing-based pattern matching is presented by Karp and Ra-

bin [123]. Some of the algorithms presented in this chapter are also discussed in the book

chapter by Aho [7], albeit in a more theoretical framework. The reader interested in further

study of string pattern matching algorithms is referred to the book by Stephen [200] and

the book chapters by Aho [7] and Crochemore and Lecroq [52].

The trie was invented by Morrison [161] and is discussed extensively in the classic

book Sorting and Searching by Knuth [131]. The name “Patricia” is short for “Practical

Algorithm to Retrieve Information Coded in Alphanumeric” [161]. McCreight [148] shows

how to construct suffix tries in linear time. An introduction to the field of information re-

trieval, which includes a discussion of search engines for the World Wide Web, is provided

in the book by Baeza-Yates and Ribeiro-Neto [20].


